Dual equilibrium problems: how a succession of aspiration points converges to an equilibrium
نویسندگان
چکیده
We consider an equilibrium problem defined on a convex set, whose cost bifunction may not be monotone. We show that this problem can be solved by the inexact partial proximal method with quasi distance. As an application, at the psychological level of behavioral dynamics, this paper shows two points: i) how a dual equilibrium problem offers a model of behavioral trap, “easy enough to reach, difficult enough to leave”, which is both an aspiration point and an equilibrium, and ii) how a succession of aspiration points converges to an equilibrium, using worthwhile changes during the goal pursuit.
منابع مشابه
A New Iterative Algorithm for Multivalued Nonexpansive Mappping and Equlibruim Problems with Applications
In this paper, we introduce two iterative schemes by a modified Krasnoselskii-Mann algorithm for finding a common element of the set of solutions of equilibrium problems and the set of fixed points of multivalued nonexpansive mappings in Hilbert space. We prove that the sequence generated by the proposed method converges strongly to a common element of the set of solutions of equilibruim proble...
متن کاملAn Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method
The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...
متن کاملEquilibrium problems and fixed point problems for nonspreading-type mappings in hilbert space
In this paper by using the idea of mean convergence, weintroduce an iterative scheme for finding a common element of theset of solutions of an equilibrium problem and the fixed points setof a nonspreading-type mappings in Hilbert space. A strongconvergence theorem of the proposed iterative scheme is establishedunder some control conditions. The main result of this paper extendthe results obtain...
متن کاملApproximating fixed points for nonexpansive mappings and generalized mixed equilibrium problems in Banach spaces
We introduce a new iterative scheme for nding a common elementof the solutions set of a generalized mixed equilibrium problem and the xedpoints set of an innitely countable family of nonexpansive mappings in a Banachspace setting. Strong convergence theorems of the proposed iterative scheme arealso established by the generalized projection method. Our results generalize thecorresponding results...
متن کامل